

1

High-Level High-Precision Design and Programming of
Real-Time Distributed Computing Components

K. H. (Kane) Kim

ECE Dept.
University of California

Irvine, CA 92697, U.S.A.
khkim@uci.edu

Abstract:

Current conditions in the information technology industry exhibit a compelling need for a real-
time (RT) distributed programming and software engineering method which is at least multiple times
more effective than currently widely practiced programming techniques [J-C00, Jen00, OMG99a,
RTE00]. This new-generation RT distributed programming method must be based on a general high-
level programming style which can be accommodated with minimal efforts by current-generation
business application programmers (using C++ and Java) rather than on a style that has been practiced
by assembly language or low-level language programmers. Ideally, designers must be required to
specify both the interactions among distributed program components and the timing requirements of
various actions in natural intuitively appealing forms only.

At the same time, a desirable RT distributed software engineering method must allow some
system engineers dealing with safety-critical applications to confidently produce certifiable RT
distributed computing systems. The state of the art in this area is quite inadequate. The general public
which has witnessed conspicuous improvements in the reliability of the desk-top computer systems in
1990's will demand in this new century a different level of reliability for the systems in safety-critical
applications. They will demand sufficiently trustable certifications of the designs and
implementations. Design-time guaranteeing of response times of computing components / systems is
considered a major technological requirement that must be fulfilled before such certification becomes
a common practice.

Particularly important directions to pursue toward these general goals are the following:
(1) High-level real-time distributed objects which do not reflect low-level program abstractions such
as threads, semaphores, and socket protocols but contain high-level intuitive and yet precise
expressions of timing requirements.
(2) Graphic user interface (GUI) based interactive design of real-time distributed computing software
structures and components and automated generation of their code-frameworks.
(3) End-to-end timing analyzability: Easy and mostly automated analysis of real-time distributed
computing software components and systems to verify the execution safety, i.e., absence of possible
timing failures, and support systematic design modification to remove timing failure possibilities, must
be enabled. This can be met only if the execution engines including kernels and middleware are also
properly structured and analyzed.

The author believes that approaches 1 and 2, if properly developed, will lead to dramatic
improvements (at least several times improvement rather than say 20% improvement) over current
practices in terms of the new-generation application development productivity and the reliability of
new-generation applications produced. The approach 3 is essential if we were to guarantee certain
levels of quality of service (QoS) in new-generation safety-critical distributed computing applications
and certify such applications.

2

The author believes that a reasonable body of research results that has established the
feasibilities of these approaches beyond any reasonable doubt exists now [IEE00, ISO, WOR].
Moreover, about 10 years of sustained support for research in these areas will result in conversion of
most of those feasibilities into daily practices. In this workshop, the author proposes to give an
overview of some of those feasibility indicators and the steps and the estimates of the efforts needed to
convert those feasibilities into the technologies relevant to daily practices by the engineers of new-
generation application systems.

More details of the author's views outlined above and his views on important research issues in
fault-tolerant real-time distributed computing technologies are discussed in [Kim00a] and [Kim00b].
Together with several colleagues such as Hermann Kopetz, the author founded the WORDS (IEEE
CS's Workshop on Object-oriented Real-time Dependable Systems) Series and the ISORC (IEEE CS
Int'l Symp. on Object-oriented Real-time distributed Computing) Series to stimulate R&D in some of
the areas mentioned above. Some more elaborations on the motivations for pursuing the approaches
mentioned above are contained in Appendix A.

References

[IEE00] 'A special issue of Computer (a magazine of IEEE Computer Society) on Object-oriented
Real-time distributed Computing', June 2000.
[ISO] ISORC (IEEE CS Int'l Symp. on Object-oriented Real-time distributed Computing) Series; 1st
held in April 1998, Kyoto, Japan; 2nd in May 1999, St. Malo, France; 3rd in March 2000, Newport
Beach, CA; 4th in May 2001, Magdeburg, Germany. Proceedings are available from IEEE CS Press.
[Kim00a] Kim, K.H., "Object-Oriented Real-Time Distributed Programming and Support
Middleware", Proc. ICPADS 2000 (7th Int'l Conf. on Parallel & Distributed Systems), Iwate, Japan,
July 2000, pp.10-20, (Keynote paper).
[Kim00b] Kim, K.H., "Issues Insufficiently Resolved in Century 20 in the Fault-Tolerant Distributed
Computing Field", Proc. SRDS 2000 (19th IEEE CS Symp. on Reliable Distributed Systems),
Nuremberg, Oct. 2000, pp.106-115 (Invited paper).
[WOR] WORDS (IEEE CS's Workshop on Object-oriented Real-time Dependable Systems) Series; 1st
held in Oct. '94, Dana Point; 2nd in Feb. 1996, Laguna Beach; 3rd in Feb. 1997, Newport Beach; 4th
in Jan. 1999, Santa Barbara; 5th in Nov. 1999, Monterey; 6th in Jan. 2001, Rome, Italy. Proceedings
are available from IEEE CS Press.

Appendix A

Motivations for using
the OO RT programming approach

Among several cutting-edge technology movements initiated in 1990's in software engineering
is the high-precision real-time (RT) object-oriented (OO) programming movement. In this author's
view, the most important goal of that movement has been to instigate a quantum productivity jump in
software engineering for RT computing application systems. Particularly targeted application domains
have been those challenging large-scale distributed / parallel computing applications in fields such as
factory automation, telecommunication, defense, intelligent transportation, emergency management,
etc.

The movement is still in its youthful stage and its impact has just started surfacing up.
However, its great potential is now much more clearly and widely recognized than it was in mid-

3

1990's.

A.1 Complexity and costs of RT distributed programming
Starting a few years ago, the field of RT computing

applications has been showing a rapid growth pattern. Computer
systems in those application domains are generally responsible
for RT control of physical devices, RT storage and search for
information, and RT communication and display of information.
In addition, they are often tasked to perform RT simulation of
their application environments. The field of computer-embedded
communication-equipped system engineering has been growing
particularly fast in recent years.

As a result, industry has felt an acute need for RT distributed programming and software
engineering methods which are at least multiple times more effective than currently widely practiced
programming techniques. This new-generation RT distributed software engineering method must be
based on a "general high-level programming style" which can be accommodated with minimal efforts
by current-generation business application programmers (using C++ and Java) rather than on a style
that has been practiced by assembly language or low-level language programmers. Continuous use of
old low-level programming styles is not economically viable for dealing with increasing demands for
new RT application systems.

Designers must be required to specify both the interactions among distributed program
components and the timing requirements of various actions in natural intuitively appealing forms only.
Designers should not be forced to deal directly with notions such as priorities for the sake of meeting
application timing requirements since priorities are usually associated with low-level computation
units such as processes and threads in manners reflecting the application semantics poorly.

The fact that distributed objects represent a higher-level structure for distributed programs than
distributed processes do have been widely recognized by the industry in the past 10 years, e.g.,
technology movements such as CORBA, DCOM, and RMI. Naturally, researchers started searching
for extensions of distributed objects that allow unambiguous specification of timing requirements
imposed on various computations units [IEE00, ISO, WOR].

A.2 Should RT programming remain an esoteric branch of computer science and engineering ?
It is fair to say that up to now, RT programming has been treated as an esoteric branch of

computer science and engineering. Very few universities have courses on RT programming and even
those few existing courses are almost entirely graduate courses.

The main reason is that RT programming has been practiced largely as an ad hoc art in a form
looking quite alien to the vast number of business and scientific application programmer. On the other
hand, there is no reason why future RT computing cannot be realized in the form of a generalization of
the non-RT computing, rather than the other way around. Figure 1 depicts this. If the main-stream
(traditional) programming science is viewed as a study of the two-dimensional space, (data X
operation), then a proper form of RT programming should be practiced as work within the three-
dimensional space, (data X operation X time). Of course, the less the programmer is burdened with
the work on the time dimension, the better off. We just need a powerful programming scheme capable
of dealing with all practically useful RT and non-RT computing requirements in uniform manners.
Under such a properly established RT programming methodology, every practically useful non-RT
program must be realizable by simply filling the time constraint specification part with the default
value "unconstrained".

Time

Data
Operation

Non-RT programming

Figure 1. RT programming as a genera-
lization of non-RT programming

4

A.3 Reliability of RT distributed programs
RT programs have been notoriously difficult to analyze. It is well known that testing alone

does not ensure sufficiently high reliability of RT programs. Given rapidly increasing demands for RT
application systems and the fact that complexities of RT distributed programs are far greater than
those of single-node programs, the practice of relying solely on testing for reliability assurance is
becoming less and less tolerable.

A new-generation RT distributed software engineering method must allow some system
engineers dealing with safety-critical applications to confidently produce certifiable RT distributed
computing systems. The general public which has witnessed conspicuous improvements in the
reliability of the desk-top computer systems in 1990's will demand in this new century a different level
of reliability for the systems in safety-critical applications. They will demand sufficiently trustable
certifications of the designs and implementations. Design-time guaranteeing of response times of
computing components / systems is considered a major technological requirement that must be fulfilled
before such certification becomes a common practice.

Moreover, distributed computer systems (DCSs) used in safety-critical RT applications must
possess some degrees of RT fault tolerance capabilities. The current reality is that widely used node
operating systems (OSs) do not show easily analyzable and predictable timing behavior. Whether we
like it or not, there are certain hard deadlines in human societies and violation of these deadlines have
severe consequences. For example, suppose cars are to be driven by automated drivers (robots). If
such cars are heading toward a collision course, then the collision can be avoided only if at least one
driver detects the danger and takes an avoidance action within a certain hard deadline. Applications
subject to hard deadlines are called hard-real-time (HRT) applications.

Therefore, both unreliable hardware components and node OSs with erratic timing behavior
can lead to violation of hard deadlines. This makes employment of RT fault tolerance mechanisms in
safety-critical RT DCSs to be imperative.

Again, whether hardware and node OSs possess RT fault tolerance mechanisms or not,
distributed HRT applications must be designed with response time guarantees. It cannot be done if
application software is structured in undisciplined manners. That is, easily analyzable structuring of
application software must be pursued to the maximum extent possible. Research in recent years has
made it clear that high-level structuring in the form of distributed RT objects has significant
advantages in this regard in comparison to somewhat lower-level distributed process structuring.

A.4 HRT program components
From the viewpoint of realizing systematic modular construction of sizable HRT distributed

computing applications, one highly desirable approach is to use HRT program components, each of
which is associated with a guaranteed service time (GST), also called guaranteed completion time, for
every service method that it provides. If a program component provides multiple service methods, it is
associated with multiple GSTs. If every program component contributing to the computation subject
to a hard deadline has a GST associated with it, then meeting the hard deadline becomes the trivial
problem of checking whether the sum of the GSTs of the contributing components is indeed less than
the hard deadline. The real problem then is to ensure that every GST associated with every program
component is credible. In a sense, each GST is a hard deadline that the designer of the program
component has decided to impose on the program component. Therefore, implementation of such a
program component may involve the use of fault tolerance mechanisms.

If a program component fails to meet a GST, then a number of other program components
designed to be dependent on the former component may also be treated as failed components unless
the latter were also designed to handle reports about the failure of the former component. Any attempt
to replace a GST of a program component by a "soft" deadline to be imposed on the component is

5

expected to lead to a complicated methodology
which does not enable modular systematic
construction of HRT systems. Special situations
where it might be worth augmenting HRT
program components with statistical
performance indicators were discussed in the
literature.

Therefore, the HRT program component
possessing GST attributes is a key to cost-
effective systematic construction of HRT
distributed computing applications. This HRT
component based construction approach is
conservative in nature but highly cost-effective
due to its systematic and modular
characteristics. Here the designer/implementer
of an HRT component announces its GST to all
potential designers of client components. We
expect that this HRT component based construction approach will meet increasing acceptance in the
practicing field in the future.

Figure 2 depicts the relationship between a client and a server component in a system
composed of HRT components which are structured as distributed computing objects. The client
object in the middle of executing its method, Method 1, calls for a service, Method 7 service, from the
server object. In order to complete its execution of Method 1 within a certain target amount of time,
the client must obtain the service result from the server within a certain deadline. During the design of
this client object, the designer searches for a server object with a GST acceptable to him/her. The
designer must also consider the time to be consumed by the communication infrastructure in judging
the acceptability of the GST of a candidate server object.

Object Data Store

Method 1

Client Object

Object Data Store

Method 2

Server Object

Method 7

Guaranteed service time
(GST) (Server's

self-imposed deadline)

Domain of
communication
infrastructure

Deadline for result
arrival

(Client's deadline)

Figure 2. Client's deadline vs. Server's GST

